Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.

نویسندگان

  • M Fortin
  • J Soulhat
  • A Shirazi-Adl
  • E B Hunziker
  • M D Buschmann
چکیده

Mechanical behavior of articular cartilage was characterized in unconfined compression to delineate regimes of linear and nonlinear behavior, to investigate the ability of a fibril-reinforced biphasic model to describe measurements, and to test the prediction of biphasic and poroelastic models that tissue dimensions alter tissue stiffness through a specific scaling law for time and frequency. Disks of full-thickness adult articular cartilage from bovine humeral heads were subjected to successive applications of small-amplitude ramp compressions cumulating to a 10 percent compression offset where a series of sinusoidal and ramp compression and ramp release displacements were superposed. We found all equilibrium behavior (up to 10 percent axial compression offset) to be linear, while most nonequilibrium behavior was nonlinear, with the exception of small-amplitude ramp compressions applied from the same compression offset. Observed nonlinear behavior included compression-offset-dependent stiffening of the transient response to ramp compression, nonlinear maintenance of compressive stress during release from a prescribed offset, and a nonlinear reduction in dynamic stiffness with increasing amplitudes of sinusoidal compression. The fibril-reinforced biphasic model was able to describe stress relaxation response to ramp compression, including the high ratio of peak to equilibrium load. However, compression offset-dependent stiffening appeared to suggest strain-dependent parameters involving strain-dependent fibril network stiffness and strain-dependent hydraulic permeability. Finally, testing of disks of different diameters and rescaling of the frequency according to the rule prescribed by current biphasic and poroelastic models (rescaling with respect to the sample's radius squared) reasonably confirmed the validity of that scaling rule. The overall results of this study support several aspects of current theoretical models of articular cartilage mechanical behavior, motivate further experimental characterization, and suggest the inclusion of specific nonlinear behaviors to models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model.

OBJECTIVE To develop a biomechanical model for cartilage which is capable of capturing experimentally observed nonlinear behaviours of cartilage and to investigate effects of collagen fibril reinforcement in cartilage. DESIGN A sequence of 10 or 20 steps of ramp compression/relaxation applied to cartilage disks in uniaxial unconfined geometry is simulated for comparison with experimental data...

متن کامل

Predicting Articular Cartilage Behavior with a Non-Linear Microstructural Model

We report here on a non-linear poroelastic model for the mechanical response of collagenous soft tissues such as articular cartilage. The tissue consists of a porous, fibril-reinforced, hyperelastic solid, saturated with an incompressible fluid, and Darcy's law governs solid-fluid interaction. The solid matrix is characterized by the isotropic hyperfoam strain energy function and its permeabili...

متن کامل

Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.

The fibril reinforced poroelastic models have been found successful in describing some mechanical behaviors of articular cartilage in unconfined compression that were not understood previously, including the strong and nonlinear transient response, the strain-magnitude and strain-rate dependent cartilage stiffness and the depth-varying stresses and strains. It has been demonstrated that a bette...

متن کامل

0160 - the Asymmetry of Compression vs. Release for Articular Cartilage in Unconfined Compression Can Be Described by a Nonlinear Poroelastic Model

Introduction: Mechanical behavior of articular cartilage is a consequence of its collagen fibrillar network entrapping a proteoglycan dominant matrix swollen by electrolyte. Fibril reinforced poroelastic models which distinguish the two major solid components (fibrillar and nonfibrillar) have been able to account for several previously difficult to describe behaviors, such as the large transien...

متن کامل

Strain-rate dependent stiffness of articular cartilage in unconfined compression.

The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 122 2  شماره 

صفحات  -

تاریخ انتشار 2000